skip to main content


Search for: All records

Creators/Authors contains: "Stahle, David W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Photorespiration can limit gross primary productivity in terrestrial plants. The rate of photorespiration relative to carbon fixation increases with temperature and decreases with atmospheric [CO2]. However, the extent to which this rate varies in the environment is unclear. Here, we introduce a proxy for relative photorespiration rate based on the clumped isotopic composition of methoxyl groups (R–O–CH3) in wood. Most methoxyl C–H bonds are formed either during photorespiration or the Calvin cycle and thus their isotopic composition may be sensitive to the mixing ratio of these pathways. In water-replete growing conditions, we find that the abundance of the clumped isotopologue13CH2D correlates with temperature (18–28 °C) and atmospheric [CO2] (280–1000 ppm), consistent with a common dependence on relative photorespiration rate. When applied to a global dataset of wood, we observe global trends of isotopic clumping with climate and water availability. Clumped isotopic compositions are similar across environments with temperatures below ~18 °C. Above ~18 °C, clumped isotopic compositions in water-limited and water-replete trees increasingly diverge. We propose that trees from hotter climates photorespire substantially more than trees from cooler climates. How increased photorespiration is managed depends on water availability: water-replete trees export more photorespiratory metabolites to lignin whereas water-limited trees either export fewer overall or direct more to other sinks that mitigate water stress. These disparate trends indicate contrasting responses of photorespiration rate (and thus gross primary productivity) to a future high-[CO2] world. This work enables reconstructing photorespiration rates in the geologic past using fossil wood.

     
    more » « less
    Free, publicly-accessible full text available November 14, 2024
  2. Abstract

    Recent severe droughts, extreme floods, and increasing differences between seasonal high and low flows on the Amazon River may represent a twenty-first-century increase in the amplitude of the hydrologic cycle over the Amazon Basin. These precipitation and streamflow changes may have arisen from natural ocean–atmospheric variability, deforestation within the drainage basin of the Amazon River, or anthropogenic climate change. Tree-ring reconstructions of wet-season precipitation extremes, substantiated with historical accounts of climate and river levels on the Amazon River and in northeast Brazil found in the Brazilian Digital Library, indicate that the recent river-level extremes on the Amazon may have been equaled or possibly exceeded during the preinstrumental nineteenth century. The “Forgotten Drought” of 1865 was the lowest wet-season rainfall total reconstructed with tree-rings in the eastern Amazon from 1790 to 2016 and appears to have been one of the lowest stream levels observed on the Amazon River during the historical era according to first-hand descriptions by Louis Agassiz, his Brazilian colleague João Martins da Silva Coutinho, and others. Heavy rains and flooding are described during most of the tree-ring-reconstructed wet extremes, including the complete inundation of “First Street” in Santarem, Brazil, in 1859 and the overtopping of the Bittencourt Bridge in Manaus, Brazil, in 1892. These extremes in the tree-ring estimates and historical observations indicate that recent high and low flow anomalies on the Amazon River may not have exceeded the natural variability of precipitation and streamflow during the nineteenth century.

    Significance Statement

    Proxy tree-ring and historical evidence for precipitation extremes during the preinstrumental nineteenth century indicate that recent floods and droughts on the Amazon River may have not yet exceeded the range of natural hydroclimatic variability.

     
    more » « less
  3. Abstract

    Instrumental records indicate a century-long trend towards drying over western North America and wetting over eastern North America. A continuation of these trends into the future would have significant hydroclimatic and socioeconomic consequences in both the semi-arid Southwest and humid East. Using tree-ring reconstructions and hydrologic simulations of summer soil moisture, we evaluate and contextualize the modern summer aridity gradient within its natural range of variability established over the past 600 years and evaluate the effects of observed and anthropogenic precipitation, temperature, and humidity trends. The 2001–2020 positive (wet east-dry west) aridity gradient was larger than any 20 year period since 1400 CE, preceded by the most negative (wet west-dry east) aridity gradient during 1976–1995, leading to a strong multi-decade reversal in aridity gradient anomalies that was rivaled only by a similar event in the late-16th century. The 2001–2020 aridity gradient was dominated by long-term summer precipitation increases in the Midwest and Northeast, with smaller contributions from more warming in the West than the East and spring precipitation decreases in the Southwest. Multi-model mean climate simulations from Coupled Model Intercomparison Project 6 experiments suggest anthropogenic climate trends should not have strongly affected the aridity gradient thus far. However, there is high uncertainty due to inter-model disagreement on anthropogenic precipitation trends. The recent strengthening of the observed aridity gradient, its increasing dependence on precipitation variability, and disagreement in modeled anthropogenic precipitation trends reveal significant uncertainties in how water resource availability will change across North America in the coming decades.

     
    more » « less
  4. Abstract

    Mean daily to monthly precipitation averages peak in late July over eastern Colorado and some of the most damaging Front Range flash floods have occurred because of extreme 1-day rainfall events during this period. Tree-ring chronologies of adjusted latewood width in ponderosa pine from eastern Colorado are highly correlated with the highest 1-day rainfall totals occurring during this 2-week precipitation maximum in late July. A regional average of four adjusted latewood chronologies from eastern Colorado was used to reconstruct the single wettest day observed during the last two weeks of July. The regional chronology was calibrated with the CPC 0.25° × 0.25° Daily U.S. Unified Gauge-Based Analysis of Precipitation dataset and explains 65% of the variance in the highest 1-day late July precipitation totals in the instrumental data from 1948 to 1997. The reconstruction and instrumental data extend fully from 1779 to 2019 and indicate that the frequency of 1-day rainfall extremes in late July has increased since the late eighteenth century. The largest instrumental and reconstructed 1-day precipitation extremes are most commonly associated with the intrusion of a major frontal system into a deep layer of atmospheric moisture across eastern Colorado. These general synoptic conditions have been previously linked to extreme localized rainfall totals and widespread thunderstorm activity over Colorado during the summer season. Chronologies of adjusted latewood width in semiarid eastern Colorado constitute a proxy of weather time-scale rainfall events useful for investigations of long-term variability and for framing natural and potential anthropogenic forcing of precipitation extremes during this 2-week precipitation maximum in a long historical perspective.

     
    more » « less
  5. Abstract

    Latewood width tree‐ring chronologies from arid‐site conifers in the southwestern United States are correlated with precipitation during portions of the summer monsoon season. The onset date and length of the monsoon season varies across the region, and these regional differences in summer rainfall climatology may impact the strength and timing of the warm season precipitation response of latewood chronologies. The optimal latewood response to summer precipitation is computed on a daily basis using 67 adjusted latewood chronologies (LWa) from the southwestern United States, adjusted to remove correlation with preceding earlywood growth. Most LWa chronologies are significantly correlated with precipitation summed over a period of approximately 4 weeks (29 days) in early summer. This early summer precipitation signal is present in most ponderosa pine chronologies across the study area. It is also evident in Douglas‐fir chronologies, but only from southern Arizona and New Mexico. The Julian date of summer precipitation onset increases from south to north in the instrumental precipitation data for the southwestern United States. The timing of the early summer season precipitation response in most LWa chronologies also tends to occur later in the summer from southeastern Arizona into northern New Mexico and eastern Colorado. Principal components analysis of the LWa chronologies reproduces two of the three most important spatial modes of early summer precipitation covariability seen in the instrumental data. The first PC of LWa is related to the same atmospheric circulation features associated with PC1 of instrumental early summer precipitation, including cyclonic circulation over the southwestern United States and moisture advection from the eastern Pacific. Correlation analyses between antecedent cool season precipitation and early summer rainfall using instrumental and tree‐ring reconstructed precipitation indicates that the tree‐ring data reproduce the multi‐decadal variability in correlation between seasons seen in the instrumental data.

     
    more » « less